kester[®]

Design of Filled One Step Chip Attach Materials (OSCA) for Conventional Mass Reflow Processing: Rheology Considerations for Jet Dispensing and Die Placement

Daniel Duffy, Hemal Bhavsar, Lin Xin, Jean Liu, Bruno Tolla Kester Inc., Itasca IL

October 29th 2015 - Orlando, FL

Outline

Introduction

- Conventional Flip Chip Assembly Process
- One Step Chip Attach Process & Materials (OSCA)
- OSCA Materials for Reflow Processing (OSCA-R)
 - Design for Dispensing & Die Placement Fillers
 - Copper Pillar Test Vehicle
 - Reflow Processing
 - Assembly by Conventional Reflow
- Summary & Conclusions

Acknowledgements

Conventional Flip Chip Assembly Process

Advantages of OSCA Materials & Process

kester

Assembly Using OSCA-R Materials

Reduced complexity and increase throughput

Assembly Using OSCA-R

Multi-Die Assemblies Using OSCA-R

Die Stack Assembly Using OSCA-R

One Step Chip Attach Process & Materials

- Key formulation design considerations for OSCA-R materials
 - Rheology/flow for dispensing and die placement
 - Balance of fluxing & cure chemistry during reflow processing
 - Final cured properties, interconnection and reliability

Confidential

OSCA-R Material Design

 OSCA-R is a multi functional reactive mixture that fluxes and then thermally cures to a high performance thermoset polymer composite during reflow processing

Confidential

OSCA-R Design – Flow Fluxing & Cure

- Particle effects on flow and cure
 - Understand chemical and physical interactions
 - Anticipate and take advantage of for material design

OSCA-R Flow – Filler Loading

First step in filled system design – understand loading response

OSCA-R Flow – Filler Size

- Second step in filled system design understand filler size response
 - Sub micron fillers required for fine pitch assemblies

OSCA-R Flow – Filler Interface Design

• Final step for filled system design – particle interface and interactions with resin

Dispensing

OSCA-R materials designed for use with different dispense technologies

OSCA-R Flow – Shear Rate Response

• Design a non-Newtonian rheology response for dispensing and placement

OSCA-R Flow – Under Compression and Extension

• Flow under compression and tension \rightarrow Placement and dispense

OSCA-R Design for Dispense

• Filled system design – avoid "stringing" and enable clean release during jet dispensing

OSCA-R Flow - Dispensing

Fluids with shear thinning / yield stress behavior meet patterning & flow control CTQs

OSCA-R materials have good jet dispensing characteristics and pattern retention

Controlled flow keeps materials out of "no-go" zones and avoids bleed out

Confidential

OSCA-R materials designed to overcome key placement challenges

• Flow properties enable dispense pattern and void elimination

 Flow behavior during die placement under compression can complicate accurate die placement

OSCA-R materials designed to overcome key placement challenges and to be compatible with common placement technologies

OSCA-R Flow - Die Placement

Finetech die bonder system

 Multi step placement procedure ensures die contact, and flow
Approach Step 1

kester

Confidential

Timing kinetics of fluxing, solder melting, interconnection and cure

Confidential

Coper Pillar Test Vehicle

Cu pillar test vehicle used for OSCA-R evaluations

Wafer thickness = 0.75mm Die size = 6.35x 6.35mm. Two daisy chained arrays Central Array 20x 20 bumps (400) Perimeter Array is 5x 70 bumps per side (1300) 128 interstitial bumps

Pitch = 80 microns Cu Pillar Height = Diameter = 40 micron 10 micron SnAg cap on pillars Cu Pad Diameter = 40 microns Cu Pad Height = 10 micron

kester

Examples of reflow profiles used to assemble devices with OSCA-R materials

 Range of profiles for different assembly applications

kester

OSCA-R Assembled Devices

Illustration of relationship between placement voids and ORCA-R rheology design

Successful assembly of devices with copper pillar features using conventional reflow processing and OSCA-R materials

Confidential

One Step Chip Attach (OSCA-R) materials can be used to assemble devices with copper pillar features using convection or conduction mass reflow

- Single die devices assembled in this work
- Can be extended to wafer level
- Can be used for 3D assembly
- Device density increase, close placement
- Approach reduces complexity of manufacturing with respect to conventional processing
- Higher throughput with use existing processing equipment

Approaches to overcoming the key technical challenges presented

- Systematic studies of soldering, rheology cure kinetics and used to design OSCA-R materials for dispensing and successful assembly
- Die and substrate size, configuration and type are integral considerations for OSCA-R materials and processing

Process integration is key to enabling OSCA-R materials

- Chemistry matched to desired reflow processing
- Rheology adjusted for dispensing and die placement process

Thank You for Your Attention

Questions?

Acknowledgements:

Kester Inc. → David Eichstadt, Maulik Shah, Chris Klimaszewski, Jim Lowe, Kal Chokshi

ITW Innovation Center→ Marina Litvinsky

Research Triangle Institute, NC. → Chris Gregory, Alan Huffman

TA-Instruments → Gregory Kamykowski PhD, Kushal Modi

Finetech → Neil O'Brian, Adrienne Gerard, Wade Gay

Sonoscan → Michelle Forbes

OSCA-R Material Properties

 Rheology, viscosity, flow properties tunable for target dispensing/flow during die placement, cure kinetics and thermomechanical properties

Property (method)	Units	Α	В	С	D	
Filler %	Wt%	40	55	0	40	
Filler Size	micron	0.5	0.5		5	_ <u>`</u>
Tg (a)	О°	159	125	116	125	ביר_
CTE-1 (a)	ppm/K	46	36	68	49	_ ≻ ₹
CTE-2 (a)	ppm/K	138	117	212	163	?
ΔH (b)	J/g	235	165	348	212	<u> </u>
T-onset (b)	О°	129	118	160	157	
T-peak (b)	О°	197	162	204	203	Ö.
Viscosity(c)	Pa-s	49	26	2.6	<mark>6.8</mark>	5
Viscosity(d)	Pa-s	14	40	2.6	6.7	
STI (e)	Ratio	3.5	0.5	1.0	1.1	_ ┣ ō
Yield Stress (f)	Pa	2	0	0	0	_ ₹
Temperature Thinning (g)	Kelvin	2200	7300	5000	6900	